maths.polynomials.single_indeterminate_operations¶
This module implements a single indeterminate polynomials class with some basic operations
Reference: https://en.wikipedia.org/wiki/Polynomial
Classes¶
Module Contents¶
- class maths.polynomials.single_indeterminate_operations.Polynomial(degree: int, coefficients: collections.abc.MutableSequence[float])¶
- __add__(polynomial_2: Polynomial) Polynomial ¶
Polynomial addition >>> p = Polynomial(2, [1, 2, 3]) >>> q = Polynomial(2, [1, 2, 3]) >>> p + q 6x^2 + 4x + 2
- __eq__(polynomial_2: object) bool ¶
Checks if two polynomials are equal. >>> p = Polynomial(2, [1, 2, 3]) >>> q = Polynomial(2, [1, 2, 3]) >>> p == q True
- __mul__(polynomial_2: Polynomial) Polynomial ¶
Polynomial multiplication >>> p = Polynomial(2, [1, 2, 3]) >>> q = Polynomial(2, [1, 2, 3]) >>> p * q 9x^4 + 12x^3 + 10x^2 + 4x + 1
- __ne__(polynomial_2: object) bool ¶
Checks if two polynomials are not equal. >>> p = Polynomial(2, [1, 2, 3]) >>> q = Polynomial(2, [1, 2, 3]) >>> p != q False
- __neg__() Polynomial ¶
Polynomial negation >>> p = Polynomial(2, [1, 2, 3]) >>> -p
3x^2 - 2x - 1
- __repr__() str ¶
>>> p = Polynomial(2, [1, 2, 3]) >>> p 3x^2 + 2x + 1
- __str__() str ¶
>>> p = Polynomial(2, [1, 2, 3]) >>> print(p) 3x^2 + 2x + 1
- __sub__(polynomial_2: Polynomial) Polynomial ¶
Polynomial subtraction >>> p = Polynomial(2, [1, 2, 4]) >>> q = Polynomial(2, [1, 2, 3]) >>> p - q 1x^2
- derivative() Polynomial ¶
Returns the derivative of the polynomial. >>> p = Polynomial(2, [1, 2, 3]) >>> p.derivative() 6x + 2
- evaluate(substitution: float) float ¶
Evaluates the polynomial at x. >>> p = Polynomial(2, [1, 2, 3]) >>> p.evaluate(2) 17
- integral(constant: float = 0) Polynomial ¶
Returns the integral of the polynomial. >>> p = Polynomial(2, [1, 2, 3]) >>> p.integral() 1.0x^3 + 1.0x^2 + 1.0x
- coefficients: list[float]¶
- degree¶