maths.numerical_analysis.newton_raphson¶
The Newton-Raphson method (aka the Newton method) is a root-finding algorithm that approximates a root of a given real-valued function f(x). It is an iterative method given by the formula
x_{n + 1} = x_n + f(x_n) / f’(x_n)
with the precision of the approximation increasing as the number of iterations increase.
Reference: https://en.wikipedia.org/wiki/Newton%27s_method
Attributes¶
Functions¶
|
Approximate the derivative of a function f(x) at a point x using the finite |
|
|
|
Find a root of the given function f using the Newton-Raphson method. |
Module Contents¶
- maths.numerical_analysis.newton_raphson.calc_derivative(f: RealFunc, x: float, delta_x: float = 0.001) float ¶
Approximate the derivative of a function f(x) at a point x using the finite difference method
>>> import math >>> tolerance = 1e-5 >>> derivative = calc_derivative(lambda x: x**2, 2) >>> math.isclose(derivative, 4, abs_tol=tolerance) True >>> derivative = calc_derivative(math.sin, 0) >>> math.isclose(derivative, 1, abs_tol=tolerance) True
- maths.numerical_analysis.newton_raphson.func(x: float) float ¶
- maths.numerical_analysis.newton_raphson.newton_raphson(f: RealFunc, x0: float = 0, max_iter: int = 100, step: float = 1e-06, max_error: float = 1e-06, log_steps: bool = False) tuple[float, float, list[float]] ¶
Find a root of the given function f using the Newton-Raphson method.
- Parameters:
f – A real-valued single-variable function
x0 – Initial guess
max_iter – Maximum number of iterations
step – Step size of x, used to approximate f’(x)
max_error – Maximum approximation error
log_steps – bool denoting whether to log intermediate steps
- Returns:
A tuple containing the approximation, the error, and the intermediate steps. If log_steps is False, then an empty list is returned for the third element of the tuple.
- Raises:
ZeroDivisionError – The derivative approaches 0.
ArithmeticError – No solution exists, or the solution isn’t found before the iteration limit is reached.
>>> import math >>> tolerance = 1e-15 >>> root, *_ = newton_raphson(lambda x: x**2 - 5*x + 2, 0.4, max_error=tolerance) >>> math.isclose(root, (5 - math.sqrt(17)) / 2, abs_tol=tolerance) True >>> root, *_ = newton_raphson(lambda x: math.log(x) - 1, 2, max_error=tolerance) >>> math.isclose(root, math.e, abs_tol=tolerance) True >>> root, *_ = newton_raphson(math.sin, 1, max_error=tolerance) >>> math.isclose(root, 0, abs_tol=tolerance) True >>> newton_raphson(math.cos, 0) Traceback (most recent call last): ... ZeroDivisionError: No converging solution found, zero derivative >>> newton_raphson(lambda x: x**2 + 1, 2) Traceback (most recent call last): ... ArithmeticError: No converging solution found, iteration limit reached
- maths.numerical_analysis.newton_raphson.RealFunc¶