maths.modular_division¶
Functions¶
|
Extended Euclid |
|
Extended Euclid's Algorithm : If d divides a and b and d = a*x + b*y for integers x |
|
Euclid's Lemma : d divides a and b, if and only if d divides a-b and b |
|
This function find the inverses of a i.e., a^(-1) |
|
Modular Division : |
|
This function used the above inversion of a to find x = (b*a^(-1))mod n |
Module Contents¶
- maths.modular_division.extended_euclid(a: int, b: int) tuple[int, int] ¶
Extended Euclid >>> extended_euclid(10, 6) (-1, 2)
>>> extended_euclid(7, 5) (-2, 3)
- maths.modular_division.extended_gcd(a: int, b: int) tuple[int, int, int] ¶
Extended Euclid’s Algorithm : If d divides a and b and d = a*x + b*y for integers x and y, then d = gcd(a,b) >>> extended_gcd(10, 6) (2, -1, 2)
>>> extended_gcd(7, 5) (1, -2, 3)
** extended_gcd function is used when d = gcd(a,b) is required in output
- maths.modular_division.greatest_common_divisor(a: int, b: int) int ¶
Euclid’s Lemma : d divides a and b, if and only if d divides a-b and b Euclid’s Algorithm
>>> greatest_common_divisor(7,5) 1
- NoteIn number theory, two integers a and b are said to be relatively prime,
mutually prime, or co-prime if the only positive integer (factor) that divides both of them is 1 i.e., gcd(a,b) = 1.
>>> greatest_common_divisor(121, 11) 11
- maths.modular_division.invert_modulo(a: int, n: int) int ¶
This function find the inverses of a i.e., a^(-1)
>>> invert_modulo(2, 5) 3
>>> invert_modulo(8,7) 1
- maths.modular_division.modular_division(a: int, b: int, n: int) int ¶
Modular Division : An efficient algorithm for dividing b by a modulo n.
GCD ( Greatest Common Divisor ) or HCF ( Highest Common Factor )
Given three integers a, b, and n, such that gcd(a,n)=1 and n>1, the algorithm should return an integer x such that 0≤x≤n-1, and b/a=x(modn) (that is, b=ax(modn)).
Theorem: a has a multiplicative inverse modulo n iff gcd(a,n) = 1
This find x = b*a^(-1) mod n Uses ExtendedEuclid to find the inverse of a
>>> modular_division(4,8,5) 2
>>> modular_division(3,8,5) 1
>>> modular_division(4, 11, 5) 4
- maths.modular_division.modular_division2(a: int, b: int, n: int) int ¶
This function used the above inversion of a to find x = (b*a^(-1))mod n
>>> modular_division2(4,8,5) 2
>>> modular_division2(3,8,5) 1
>>> modular_division2(4, 11, 5) 4