maths.integer_square_root¶
Integer Square Root Algorithm – An efficient method to calculate the square root of a non-negative integer ‘num’ rounded down to the nearest integer. It uses a binary search approach to find the integer square root without using any built-in exponent functions or operators. * https://en.wikipedia.org/wiki/Integer_square_root * https://docs.python.org/3/library/math.html#math.isqrt Note:
This algorithm is designed for non-negative integers only.
The result is rounded down to the nearest integer.
The algorithm has a time complexity of O(log(x)).
Original algorithm idea based on binary search.
Functions¶
|
Returns the integer square root of a non-negative integer num. |
Module Contents¶
- maths.integer_square_root.integer_square_root(num: int) int ¶
Returns the integer square root of a non-negative integer num. Args:
num: A non-negative integer.
- Returns:
The integer square root of num.
- Raises:
ValueError: If num is not an integer or is negative.
>>> [integer_square_root(i) for i in range(18)] [0, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4] >>> integer_square_root(625) 25 >>> integer_square_root(2_147_483_647) 46340 >>> from math import isqrt >>> all(integer_square_root(i) == isqrt(i) for i in range(20)) True >>> integer_square_root(-1) Traceback (most recent call last): ... ValueError: num must be non-negative integer >>> integer_square_root(1.5) Traceback (most recent call last): ... ValueError: num must be non-negative integer >>> integer_square_root("0") Traceback (most recent call last): ... ValueError: num must be non-negative integer