maths.gaussian¶
Reference: https://en.wikipedia.org/wiki/Gaussian_function
Functions¶
|
Module Contents¶
- maths.gaussian.gaussian(x, mu: float = 0.0, sigma: float = 1.0) float ¶
>>> float(gaussian(1)) 0.24197072451914337
>>> float(gaussian(24)) 3.342714441794458e-126
>>> float(gaussian(1, 4, 2)) 0.06475879783294587
>>> float(gaussian(1, 5, 3)) 0.05467002489199788
Supports NumPy Arrays Use numpy.meshgrid with this to generate gaussian blur on images. >>> import numpy as np >>> x = np.arange(15) >>> gaussian(x) array([3.98942280e-01, 2.41970725e-01, 5.39909665e-02, 4.43184841e-03,
1.33830226e-04, 1.48671951e-06, 6.07588285e-09, 9.13472041e-12, 5.05227108e-15, 1.02797736e-18, 7.69459863e-23, 2.11881925e-27, 2.14638374e-32, 7.99882776e-38, 1.09660656e-43])
>>> float(gaussian(15)) 5.530709549844416e-50
>>> gaussian([1,2, 'string']) Traceback (most recent call last): ... TypeError: unsupported operand type(s) for -: 'list' and 'float'
>>> gaussian('hello world') Traceback (most recent call last): ... TypeError: unsupported operand type(s) for -: 'str' and 'float'
>>> gaussian(10**234) Traceback (most recent call last): ... OverflowError: (34, 'Result too large')
>>> float(gaussian(10**-326)) 0.3989422804014327
>>> float(gaussian(2523, mu=234234, sigma=3425)) 0.0