maths.fibonacci¶
Calculates the Fibonacci sequence using iteration, recursion, memoization, and a simplified form of Binet’s formula
NOTE 1: the iterative, recursive, memoization functions are more accurate than the Binet’s formula function because the Binet formula function uses floats
NOTE 2: the Binet’s formula function is much more limited in the size of inputs that it can handle due to the size limitations of Python floats NOTE 3: the matrix function is the fastest and most memory efficient for large n
See benchmark numbers in __main__ for performance comparisons/ https://en.wikipedia.org/wiki/Fibonacci_number for more information
Attributes¶
Functions¶
|
Calculates the first n (0-indexed) Fibonacci numbers using a simplified form |
|
Calculates the first n (0-indexed) Fibonacci numbers using iteration |
|
Calculates the first n (1-indexed) Fibonacci numbers using iteration with yield |
|
Calculates the n-th Fibonacci number using matrix exponentiation. |
|
Calculates the first n (0-indexed) Fibonacci numbers using memoization |
|
Calculates the first n (0-indexed) Fibonacci numbers using recursion |
|
Calculates the first n (0-indexed) Fibonacci numbers using recursion |
|
Raises a matrix to the power of 'power' using binary exponentiation. |
|
Times the execution of a function with parameters |
Module Contents¶
- maths.fibonacci.fib_binet(n: int) list[int] ¶
Calculates the first n (0-indexed) Fibonacci numbers using a simplified form of Binet’s formula: https://en.m.wikipedia.org/wiki/Fibonacci_number#Computation_by_rounding
NOTE 1: this function diverges from fib_iterative at around n = 71, likely due to compounding floating-point arithmetic errors
NOTE 2: this function doesn’t accept n >= 1475 because it overflows thereafter due to the size limitations of Python floats >>> fib_binet(0) [0] >>> fib_binet(1) [0, 1] >>> fib_binet(5) [0, 1, 1, 2, 3, 5] >>> fib_binet(10) [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55] >>> fib_binet(-1) Traceback (most recent call last):
…
ValueError: n is negative >>> fib_binet(1475) Traceback (most recent call last):
…
ValueError: n is too large
- maths.fibonacci.fib_iterative(n: int) list[int] ¶
Calculates the first n (0-indexed) Fibonacci numbers using iteration >>> fib_iterative(0) [0] >>> fib_iterative(1) [0, 1] >>> fib_iterative(5) [0, 1, 1, 2, 3, 5] >>> fib_iterative(10) [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55] >>> fib_iterative(-1) Traceback (most recent call last):
…
ValueError: n is negative
- maths.fibonacci.fib_iterative_yield(n: int) collections.abc.Iterator[int] ¶
Calculates the first n (1-indexed) Fibonacci numbers using iteration with yield >>> list(fib_iterative_yield(0)) [0] >>> tuple(fib_iterative_yield(1)) (0, 1) >>> tuple(fib_iterative_yield(5)) (0, 1, 1, 2, 3, 5) >>> tuple(fib_iterative_yield(10)) (0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55) >>> tuple(fib_iterative_yield(-1)) Traceback (most recent call last):
…
ValueError: n is negative
- maths.fibonacci.fib_matrix_np(n: int) int ¶
Calculates the n-th Fibonacci number using matrix exponentiation. https://www.nayuki.io/page/fast-fibonacci-algorithms#:~:text= Summary:%20The%20two%20fast%20Fibonacci%20algorithms%20are%20matrix
- Args:
n: Fibonacci sequence index
- Returns:
The n-th Fibonacci number.
- Raises:
ValueError: If n is negative.
>>> fib_matrix_np(0) 0 >>> fib_matrix_np(1) 1 >>> fib_matrix_np(5) 5 >>> fib_matrix_np(10) 55 >>> fib_matrix_np(-1) Traceback (most recent call last): ... ValueError: n is negative
- maths.fibonacci.fib_memoization(n: int) list[int] ¶
Calculates the first n (0-indexed) Fibonacci numbers using memoization >>> fib_memoization(0) [0] >>> fib_memoization(1) [0, 1] >>> fib_memoization(5) [0, 1, 1, 2, 3, 5] >>> fib_memoization(10) [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55] >>> fib_iterative(-1) Traceback (most recent call last):
…
ValueError: n is negative
- maths.fibonacci.fib_recursive(n: int) list[int] ¶
Calculates the first n (0-indexed) Fibonacci numbers using recursion >>> fib_iterative(0) [0] >>> fib_iterative(1) [0, 1] >>> fib_iterative(5) [0, 1, 1, 2, 3, 5] >>> fib_iterative(10) [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55] >>> fib_iterative(-1) Traceback (most recent call last):
…
ValueError: n is negative
- maths.fibonacci.fib_recursive_cached(n: int) list[int] ¶
Calculates the first n (0-indexed) Fibonacci numbers using recursion >>> fib_iterative(0) [0] >>> fib_iterative(1) [0, 1] >>> fib_iterative(5) [0, 1, 1, 2, 3, 5] >>> fib_iterative(10) [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55] >>> fib_iterative(-1) Traceback (most recent call last):
…
ValueError: n is negative
- maths.fibonacci.matrix_pow_np(m: numpy.ndarray, power: int) numpy.ndarray ¶
Raises a matrix to the power of ‘power’ using binary exponentiation.
- Args:
m: Matrix as a numpy array. power: The power to which the matrix is to be raised.
- Returns:
The matrix raised to the power.
- Raises:
ValueError: If power is negative.
>>> m = np.array([[1, 1], [1, 0]], dtype=int) >>> matrix_pow_np(m, 0) # Identity matrix when raised to the power of 0 array([[1, 0], [0, 1]])
>>> matrix_pow_np(m, 1) # Same matrix when raised to the power of 1 array([[1, 1], [1, 0]])
>>> matrix_pow_np(m, 5) array([[8, 5], [5, 3]])
>>> matrix_pow_np(m, -1) Traceback (most recent call last): ... ValueError: power is negative
- maths.fibonacci.time_func(func, *args, **kwargs)¶
Times the execution of a function with parameters
- maths.fibonacci.num = 30¶