maths.chudnovsky_algorithm¶
Attributes¶
Functions¶
|
The Chudnovsky algorithm is a fast method for calculating the digits of PI, |
Module Contents¶
- maths.chudnovsky_algorithm.pi(precision: int) str ¶
The Chudnovsky algorithm is a fast method for calculating the digits of PI, based on Ramanujan’s PI formulae.
https://en.wikipedia.org/wiki/Chudnovsky_algorithm
- PI = constant_term / ((multinomial_term * linear_term) / exponential_term)
where constant_term = 426880 * sqrt(10005)
- The linear_term and the exponential_term can be defined iteratively as follows:
L_k+1 = L_k + 545140134 where L_0 = 13591409 X_k+1 = X_k * -262537412640768000 where X_0 = 1
- The multinomial_term is defined as follows:
- 6k! / ((3k)! * (k!) ^ 3)
where k is the k_th iteration.
This algorithm correctly calculates around 14 digits of PI per iteration
>>> pi(10) '3.14159265' >>> pi(100) '3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862803482534211706' >>> pi('hello') Traceback (most recent call last): ... TypeError: Undefined for non-integers >>> pi(-1) Traceback (most recent call last): ... ValueError: Undefined for non-natural numbers
- maths.chudnovsky_algorithm.n = 50¶