machine_learning.dimensionality_reduction¶
- Requirements:
numpy version 1.21
scipy version 1.3.3
- Notes:
Each column of the features matrix corresponds to a class item
Functions¶
|
Function to reshape a row Numpy array into a column Numpy array |
|
Function to compute the covariance matrix between multiple classes |
|
Function to compute the covariance matrix inside each class. |
|
Linear Discriminant Analysis. |
|
Principal Component Analysis. |
Module Contents¶
- machine_learning.dimensionality_reduction.column_reshape(input_array: numpy.ndarray) numpy.ndarray ¶
Function to reshape a row Numpy array into a column Numpy array >>> input_array = np.array([1, 2, 3]) >>> column_reshape(input_array) array([[1],
[2], [3]])
- machine_learning.dimensionality_reduction.covariance_between_classes(features: numpy.ndarray, labels: numpy.ndarray, classes: int) numpy.ndarray ¶
Function to compute the covariance matrix between multiple classes >>> features = np.array([[9, 2, 3], [4, 3, 6], [1, 8, 9]]) >>> labels = np.array([0, 1, 0]) >>> covariance_between_classes(features, labels, 2) array([[ 3.55555556, 1.77777778, -2.66666667],
[ 1.77777778, 0.88888889, -1.33333333], [-2.66666667, -1.33333333, 2. ]])
- machine_learning.dimensionality_reduction.covariance_within_classes(features: numpy.ndarray, labels: numpy.ndarray, classes: int) numpy.ndarray ¶
Function to compute the covariance matrix inside each class. >>> features = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) >>> labels = np.array([0, 1, 0]) >>> covariance_within_classes(features, labels, 2) array([[0.66666667, 0.66666667, 0.66666667],
[0.66666667, 0.66666667, 0.66666667], [0.66666667, 0.66666667, 0.66666667]])
- machine_learning.dimensionality_reduction.linear_discriminant_analysis(features: numpy.ndarray, labels: numpy.ndarray, classes: int, dimensions: int) numpy.ndarray ¶
Linear Discriminant Analysis.
For more details, see: https://en.wikipedia.org/wiki/Linear_discriminant_analysis. Parameters:
features: the features extracted from the dataset
labels: the class labels of the features
classes: the number of classes present in the dataset
dimensions: to filter the projected data for the desired dimension
>>> test_linear_discriminant_analysis()
- machine_learning.dimensionality_reduction.principal_component_analysis(features: numpy.ndarray, dimensions: int) numpy.ndarray ¶
Principal Component Analysis.
For more details, see: https://en.wikipedia.org/wiki/Principal_component_analysis. Parameters:
features: the features extracted from the dataset
dimensions: to filter the projected data for the desired dimension
>>> test_principal_component_analysis()
- machine_learning.dimensionality_reduction.test_linear_discriminant_analysis() None ¶
- machine_learning.dimensionality_reduction.test_principal_component_analysis() None ¶