linear_algebra.gaussian_elimination¶
Gaussian elimination method for solving a system of linear equations. Gaussian elimination - https://en.wikipedia.org/wiki/Gaussian_elimination
Functions¶
|
This function performs Gaussian elimination method |
This function performs a retroactive linear system resolution |
Module Contents¶
- linear_algebra.gaussian_elimination.gaussian_elimination(coefficients: numpy.typing.NDArray[numpy.float64], vector: numpy.typing.NDArray[numpy.float64]) numpy.typing.NDArray[numpy.float64] ¶
This function performs Gaussian elimination method
- Examples:
1x1 - 4x2 - 2x3 = -2 1x1 + 2x2 = 5 5x1 + 2x2 - 2x3 = -3 5x1 + 2x2 = 5 1x1 - 1x2 + 0x3 = 4
>>> gaussian_elimination([[1, -4, -2], [5, 2, -2], [1, -1, 0]], [[-2], [-3], [4]]) array([[ 2.3 ], [-1.7 ], [ 5.55]]) >>> gaussian_elimination([[1, 2], [5, 2]], [[5], [5]]) array([[0. ], [2.5]])
- linear_algebra.gaussian_elimination.retroactive_resolution(coefficients: numpy.typing.NDArray[numpy.float64], vector: numpy.typing.NDArray[numpy.float64]) numpy.typing.NDArray[numpy.float64] ¶
- This function performs a retroactive linear system resolution
for triangular matrix
- Examples:
2x1 + 2x2 - 1x3 = 5 2x1 + 2x2 = -1 0x1 - 2x2 - 1x3 = -7 0x1 - 2x2 = -1 0x1 + 0x2 + 5x3 = 15
>>> gaussian_elimination([[2, 2, -1], [0, -2, -1], [0, 0, 5]], [[5], [-7], [15]]) array([[2.], [2.], [3.]]) >>> gaussian_elimination([[2, 2], [0, -2]], [[-1], [-1]]) array([[-1. ], [ 0.5]])