graphs.markov_chain¶
Classes¶
Undirected Unweighted Graph for running Markov Chain Algorithm |
Functions¶
|
Running Markov Chain algorithm and calculating the number of times each node is |
Module Contents¶
- class graphs.markov_chain.MarkovChainGraphUndirectedUnweighted¶
Undirected Unweighted Graph for running Markov Chain Algorithm
- add_node(node: str) None ¶
- add_transition_probability(node1: str, node2: str, probability: float) None ¶
- get_nodes() list[str] ¶
- transition(node: str) str ¶
- connections¶
- graphs.markov_chain.get_transitions(start: str, transitions: list[tuple[str, str, float]], steps: int) dict[str, int] ¶
Running Markov Chain algorithm and calculating the number of times each node is visited
>>> transitions = [ ... ('a', 'a', 0.9), ... ('a', 'b', 0.075), ... ('a', 'c', 0.025), ... ('b', 'a', 0.15), ... ('b', 'b', 0.8), ... ('b', 'c', 0.05), ... ('c', 'a', 0.25), ... ('c', 'b', 0.25), ... ('c', 'c', 0.5) ... ]
>>> result = get_transitions('a', transitions, 5000)
>>> result['a'] > result['b'] > result['c'] True