graphs.ant_colony_optimization_algorithms¶
Use an ant colony optimization algorithm to solve the travelling salesman problem (TSP) which asks the following question: “Given a list of cities and the distances between each pair of cities, what is the
shortest possible route that visits each city exactly once and returns to the origin city?”
https://en.wikipedia.org/wiki/Ant_colony_optimization_algorithms https://en.wikipedia.org/wiki/Travelling_salesman_problem
Author: Clark
Attributes¶
Functions¶
|
Choose the next city for ants |
|
Calculate the distance between two coordinate points |
|
Ant colony algorithm main function |
|
Update pheromones on the route and update the best route |
Module Contents¶
- graphs.ant_colony_optimization_algorithms.city_select(pheromone: list[list[float]], current_city: dict[int, list[int]], unvisited_cities: dict[int, list[int]], alpha: float, beta: float) tuple[dict[int, list[int]], dict[int, list[int]]] ¶
Choose the next city for ants >>> city_select(pheromone=[[1.0, 1.0], [1.0, 1.0]], current_city={0: [0, 0]}, … unvisited_cities={1: [2, 2]}, alpha=1.0, beta=5.0) ({1: [2, 2]}, {}) >>> city_select(pheromone=[], current_city={0: [0,0]}, … unvisited_cities={1: [2, 2]}, alpha=1.0, beta=5.0) Traceback (most recent call last):
…
IndexError: list index out of range >>> city_select(pheromone=[[1.0, 1.0], [1.0, 1.0]], current_city={}, … unvisited_cities={1: [2, 2]}, alpha=1.0, beta=5.0) Traceback (most recent call last):
…
StopIteration >>> city_select(pheromone=[[1.0, 1.0], [1.0, 1.0]], current_city={0: [0, 0]}, … unvisited_cities={}, alpha=1.0, beta=5.0) Traceback (most recent call last):
…
IndexError: list index out of range
- graphs.ant_colony_optimization_algorithms.distance(city1: list[int], city2: list[int]) float ¶
Calculate the distance between two coordinate points >>> distance([0, 0], [3, 4] ) 5.0 >>> distance([0, 0], [-3, 4] ) 5.0 >>> distance([0, 0], [-3, -4] ) 5.0
- graphs.ant_colony_optimization_algorithms.main(cities: dict[int, list[int]], ants_num: int, iterations_num: int, pheromone_evaporation: float, alpha: float, beta: float, q: float) tuple[list[int], float] ¶
Ant colony algorithm main function >>> main(cities=cities, ants_num=10, iterations_num=20, … pheromone_evaporation=0.7, alpha=1.0, beta=5.0, q=10) ([0, 1, 2, 3, 4, 5, 6, 7, 0], 37.909778143828696) >>> main(cities={0: [0, 0], 1: [2, 2]}, ants_num=5, iterations_num=5, … pheromone_evaporation=0.7, alpha=1.0, beta=5.0, q=10) ([0, 1, 0], 5.656854249492381) >>> main(cities={0: [0, 0], 1: [2, 2], 4: [4, 4]}, ants_num=5, iterations_num=5, … pheromone_evaporation=0.7, alpha=1.0, beta=5.0, q=10) Traceback (most recent call last):
…
IndexError: list index out of range >>> main(cities={}, ants_num=5, iterations_num=5, … pheromone_evaporation=0.7, alpha=1.0, beta=5.0, q=10) Traceback (most recent call last):
…
StopIteration >>> main(cities={0: [0, 0], 1: [2, 2]}, ants_num=0, iterations_num=5, … pheromone_evaporation=0.7, alpha=1.0, beta=5.0, q=10) ([], inf) >>> main(cities={0: [0, 0], 1: [2, 2]}, ants_num=5, iterations_num=0, … pheromone_evaporation=0.7, alpha=1.0, beta=5.0, q=10) ([], inf) >>> main(cities={0: [0, 0], 1: [2, 2]}, ants_num=5, iterations_num=5, … pheromone_evaporation=1, alpha=1.0, beta=5.0, q=10) ([0, 1, 0], 5.656854249492381) >>> main(cities={0: [0, 0], 1: [2, 2]}, ants_num=5, iterations_num=5, … pheromone_evaporation=0, alpha=1.0, beta=5.0, q=10) ([0, 1, 0], 5.656854249492381)
- graphs.ant_colony_optimization_algorithms.pheromone_update(pheromone: list[list[float]], cities: dict[int, list[int]], pheromone_evaporation: float, ants_route: list[list[int]], q: float, best_path: list[int], best_distance: float) tuple[list[list[float]], list[int], float] ¶
Update pheromones on the route and update the best route >>> >>> pheromone_update(pheromone=[[1.0, 1.0], [1.0, 1.0]], … cities={0: [0,0], 1: [2,2]}, pheromone_evaporation=0.7, … ants_route=[[0, 1, 0]], q=10, best_path=[], … best_distance=float(“inf”)) ([[0.7, 4.235533905932737], [4.235533905932737, 0.7]], [0, 1, 0], 5.656854249492381) >>> pheromone_update(pheromone=[], … cities={0: [0,0], 1: [2,2]}, pheromone_evaporation=0.7, … ants_route=[[0, 1, 0]], q=10, best_path=[], … best_distance=float(“inf”)) Traceback (most recent call last):
…
IndexError: list index out of range >>> pheromone_update(pheromone=[[1.0, 1.0], [1.0, 1.0]], … cities={}, pheromone_evaporation=0.7, … ants_route=[[0, 1, 0]], q=10, best_path=[], … best_distance=float(“inf”)) Traceback (most recent call last):
…
KeyError: 0
- graphs.ant_colony_optimization_algorithms.cities¶