dynamic_programming.subset_generation¶
Functions¶
|
Compute n-element combinations from a given list using dynamic programming. |
Module Contents¶
- dynamic_programming.subset_generation.subset_combinations(elements: list[int], n: int) list ¶
Compute n-element combinations from a given list using dynamic programming.
- Args:
elements: The list of elements from which combinations will be generated.
n: The number of elements in each combination.
- Returns:
A list of tuples, each representing a combination of n elements.
>>> subset_combinations(elements=[10, 20, 30, 40], n=2) [(10, 20), (10, 30), (10, 40), (20, 30), (20, 40), (30, 40)] >>> subset_combinations(elements=[1, 2, 3], n=1) [(1,), (2,), (3,)] >>> subset_combinations(elements=[1, 2, 3], n=3) [(1, 2, 3)] >>> subset_combinations(elements=[42], n=1) [(42,)] >>> subset_combinations(elements=[6, 7, 8, 9], n=4) [(6, 7, 8, 9)] >>> subset_combinations(elements=[10, 20, 30, 40, 50], n=0) [()] >>> subset_combinations(elements=[1, 2, 3, 4], n=2) [(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)] >>> subset_combinations(elements=[1, 'apple', 3.14], n=2) [(1, 'apple'), (1, 3.14), ('apple', 3.14)] >>> subset_combinations(elements=['single'], n=0) [()] >>> subset_combinations(elements=[], n=9) [] >>> from itertools import combinations >>> all(subset_combinations(items, n) == list(combinations(items, n)) ... for items, n in ( ... ([10, 20, 30, 40], 2), ([1, 2, 3], 1), ([1, 2, 3], 3), ([42], 1), ... ([6, 7, 8, 9], 4), ([10, 20, 30, 40, 50], 1), ([1, 2, 3, 4], 2), ... ([1, 'apple', 3.14], 2), (['single'], 0), ([], 9))) True