computer_vision.haralick_descriptors

https://en.wikipedia.org/wiki/Image_texture https://en.wikipedia.org/wiki/Co-occurrence_matrix#Application_to_image_analysis

Attributes

index

Functions

binarize(→ numpy.ndarray)

Binarizes a grayscale image based on a given threshold value,

binary_mask(→ tuple[numpy.ndarray, numpy.ndarray])

Apply binary mask, or thresholding based

closing_filter(→ numpy.ndarray)

Opening filter, defined as the sequence of

euclidean(→ float)

Simple method for calculating the euclidean distance between two points,

get_descriptors(→ numpy.ndarray)

Calculate all Haralick descriptors for a sequence of

get_distances(→ list[tuple[int, float]])

Calculate all Euclidean distances between a selected base descriptor

grayscale(→ numpy.ndarray)

Uses luminance weights to transform RGB channel to greyscale, by

haralick_descriptors(→ list[float])

Calculates all 8 Haralick descriptors based on co-occurrence input matrix.

matrix_concurrency(→ numpy.ndarray)

Calculate sample co-occurrence matrix based on input image

normalize_array(→ numpy.ndarray)

Normalizes a 1D array, between ranges 0-cap.

normalize_image(→ numpy.ndarray)

Normalizes image in Numpy 2D array format, between ranges 0-cap,

opening_filter(→ numpy.ndarray)

Opening filter, defined as the sequence of

root_mean_square_error(→ float)

Simple implementation of Root Mean Squared Error

transform(→ numpy.ndarray)

Simple image transformation using one of two available filter functions:

Module Contents

computer_vision.haralick_descriptors.binarize(image: numpy.ndarray, threshold: float = 127.0) numpy.ndarray

Binarizes a grayscale image based on a given threshold value, setting values to 1 or 0 accordingly.

Examples:
>>> binarize(np.array([[128, 255], [101, 156]]))
array([[1, 1],
       [0, 1]])
>>> binarize(np.array([[0.07, 1], [0.51, 0.3]]), threshold=0.5)
array([[0, 1],
       [1, 0]])
computer_vision.haralick_descriptors.binary_mask(image_gray: numpy.ndarray, image_map: numpy.ndarray) tuple[numpy.ndarray, numpy.ndarray]

Apply binary mask, or thresholding based on bit mask value (mapping mask is binary).

Returns the mapped true value mask and its complementary false value mask.

Example:
>>> img = np.array([[[108, 201, 72], [255, 11,  127]],
...                 [[56,  56,  56], [128, 255, 107]]])
>>> gray = grayscale(img)
>>> binary = binarize(gray)
>>> morphological = opening_filter(binary)
>>> binary_mask(gray, morphological)
(array([[1, 1],
       [1, 1]], dtype=uint8), array([[158,  97],
       [ 56, 200]], dtype=uint8))
computer_vision.haralick_descriptors.closing_filter(image: numpy.ndarray, kernel: numpy.ndarray | None = None) numpy.ndarray

Opening filter, defined as the sequence of dilation and then erosion filter on the same image.

Examples:
>>> img = np.array([[1, 0.5], [0.2, 0.7]])
>>> img = binarize(img, threshold=0.5)
>>> closing_filter(img)
array([[0, 0],
       [0, 0]], dtype=uint8)
computer_vision.haralick_descriptors.euclidean(point_1: numpy.ndarray, point_2: numpy.ndarray) float

Simple method for calculating the euclidean distance between two points, with type np.ndarray.

Example:
>>> a = np.array([1, 0, -2])
>>> b = np.array([2, -1, 1])
>>> euclidean(a, b)
3.3166247903554
computer_vision.haralick_descriptors.get_descriptors(masks: tuple[numpy.ndarray, numpy.ndarray], coordinate: tuple[int, int]) numpy.ndarray

Calculate all Haralick descriptors for a sequence of different co-occurrence matrices, given input masks and coordinates.

Example:
>>> img = np.array([[[108, 201, 72], [255, 11,  127]],
...                 [[56,  56,  56], [128, 255, 107]]])
>>> gray = grayscale(img)
>>> binary = binarize(gray)
>>> morphological = opening_filter(binary)
>>> get_descriptors(binary_mask(gray, morphological), (0, 1))
array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])
computer_vision.haralick_descriptors.get_distances(descriptors: numpy.ndarray, base: int) list[tuple[int, float]]

Calculate all Euclidean distances between a selected base descriptor and all other Haralick descriptors The resulting comparison is return in decreasing order, showing which descriptor is the most similar to the selected base.

Args:

descriptors: Haralick descriptors to compare with base index base: Haralick descriptor index to use as base when calculating respective euclidean distance to other descriptors.

Returns:

Ordered distances between descriptors

Example:
>>> index = 1
>>> img = np.array([[[108, 201, 72], [255, 11,  127]],
...                 [[56,  56,  56], [128, 255, 107]]])
>>> gray = grayscale(img)
>>> binary = binarize(gray)
>>> morphological = opening_filter(binary)
>>> get_distances(get_descriptors(
...                 binary_mask(gray, morphological), (0, 1)),
...               index)
[(0, 0.0), (1, 0.0), (2, 0.0), (3, 0.0), (4, 0.0), (5, 0.0), (6, 0.0), (7, 0.0), (8, 0.0), (9, 0.0), (10, 0.0), (11, 0.0), (12, 0.0), (13, 0.0), (14, 0.0), (15, 0.0)]
computer_vision.haralick_descriptors.grayscale(image: numpy.ndarray) numpy.ndarray

Uses luminance weights to transform RGB channel to greyscale, by taking the dot product between the channel and the weights.

Example:
>>> grayscale(np.array([[[108, 201, 72], [255, 11,  127]],
...                     [[56,  56,  56], [128, 255, 107]]]))
array([[158,  97],
       [ 56, 200]], dtype=uint8)
computer_vision.haralick_descriptors.haralick_descriptors(matrix: numpy.ndarray) list[float]

Calculates all 8 Haralick descriptors based on co-occurrence input matrix. All descriptors are as follows: Maximum probability, Inverse Difference, Homogeneity, Entropy, Energy, Dissimilarity, Contrast and Correlation

Args:

matrix: Co-occurrence matrix to use as base for calculating descriptors.

Returns:

Reverse ordered list of resulting descriptors

Example:
>>> img = np.array([[[108, 201, 72], [255, 11,  127]],
...                 [[56,  56,  56], [128, 255, 107]]])
>>> gray = grayscale(img)
>>> binary = binarize(gray)
>>> morphological = opening_filter(binary)
>>> mask_1 = binary_mask(gray, morphological)[0]
>>> concurrency = matrix_concurrency(mask_1, (0, 1))
>>> [float(f) for f in haralick_descriptors(concurrency)]
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
computer_vision.haralick_descriptors.matrix_concurrency(image: numpy.ndarray, coordinate: tuple[int, int]) numpy.ndarray

Calculate sample co-occurrence matrix based on input image as well as selected coordinates on image.

Implementation is made using basic iteration, as function to be performed (np.max) is non-linear and therefore not callable on the frequency domain.

Example:
>>> img = np.array([[[108, 201, 72], [255, 11,  127]],
...                 [[56,  56,  56], [128, 255, 107]]])
>>> gray = grayscale(img)
>>> binary = binarize(gray)
>>> morphological = opening_filter(binary)
>>> mask_1 = binary_mask(gray, morphological)[0]
>>> matrix_concurrency(mask_1, (0, 1))
array([[0., 0.],
       [0., 0.]])
computer_vision.haralick_descriptors.normalize_array(array: numpy.ndarray, cap: float = 1) numpy.ndarray

Normalizes a 1D array, between ranges 0-cap.

Args:

array: List containing values to be normalized between cap range. cap: Maximum cap amount for normalization.

Returns:

return 1D numpy array, corresponding to limited range array

Examples:
>>> normalize_array(np.array([2, 3, 5, 7]))
array([0. , 0.2, 0.6, 1. ])
>>> normalize_array(np.array([[5], [7], [11], [13]]))
array([[0.  ],
       [0.25],
       [0.75],
       [1.  ]])
computer_vision.haralick_descriptors.normalize_image(image: numpy.ndarray, cap: float = 255.0, data_type: numpy.dtype = np.uint8) numpy.ndarray

Normalizes image in Numpy 2D array format, between ranges 0-cap, as to fit uint8 type.

Args:

image: 2D numpy array representing image as matrix, with values in any range cap: Maximum cap amount for normalization data_type: numpy data type to set output variable to

Returns:

return 2D numpy array of type uint8, corresponding to limited range matrix

Examples:
>>> normalize_image(np.array([[1, 2, 3], [4, 5, 10]]),
...                 cap=1.0, data_type=np.float64)
array([[0.        , 0.11111111, 0.22222222],
       [0.33333333, 0.44444444, 1.        ]])
>>> normalize_image(np.array([[4, 4, 3], [1, 7, 2]]))
array([[127, 127,  85],
       [  0, 255,  42]], dtype=uint8)
computer_vision.haralick_descriptors.opening_filter(image: numpy.ndarray, kernel: numpy.ndarray | None = None) numpy.ndarray

Opening filter, defined as the sequence of erosion and then a dilation filter on the same image.

Examples:
>>> img = np.array([[1, 0.5], [0.2, 0.7]])
>>> img = binarize(img, threshold=0.5)
>>> opening_filter(img)
array([[1, 1],
       [1, 1]], dtype=uint8)
computer_vision.haralick_descriptors.root_mean_square_error(original: numpy.ndarray, reference: numpy.ndarray) float

Simple implementation of Root Mean Squared Error for two N dimensional numpy arrays.

Examples:
>>> root_mean_square_error(np.array([1, 2, 3]), np.array([1, 2, 3]))
0.0
>>> root_mean_square_error(np.array([1, 2, 3]), np.array([2, 2, 2]))
0.816496580927726
>>> root_mean_square_error(np.array([1, 2, 3]), np.array([6, 4, 2]))
3.1622776601683795
computer_vision.haralick_descriptors.transform(image: numpy.ndarray, kind: str, kernel: numpy.ndarray | None = None) numpy.ndarray

Simple image transformation using one of two available filter functions: Erosion and Dilation.

Args:

image: binarized input image, onto which to apply transformation kind: Can be either ‘erosion’, in which case the :func:np.max

function is called, or ‘dilation’, when :func:np.min is used instead.

kernel: n x n kernel with shape < :attr:image.shape,

to be used when applying convolution to original image

Returns:

returns a numpy array with same shape as input image, corresponding to applied binary transformation.

Examples:
>>> img = np.array([[1, 0.5], [0.2, 0.7]])
>>> img = binarize(img, threshold=0.5)
>>> transform(img, 'erosion')
array([[1, 1],
       [1, 1]], dtype=uint8)
>>> transform(img, 'dilation')
array([[0, 0],
       [0, 0]], dtype=uint8)
computer_vision.haralick_descriptors.index