computer_vision.haralick_descriptors¶
https://en.wikipedia.org/wiki/Image_texture https://en.wikipedia.org/wiki/Co-occurrence_matrix#Application_to_image_analysis
Attributes¶
Functions¶
|
Binarizes a grayscale image based on a given threshold value, |
|
Apply binary mask, or thresholding based |
|
Opening filter, defined as the sequence of |
|
Simple method for calculating the euclidean distance between two points, |
|
Calculate all Haralick descriptors for a sequence of |
|
Calculate all Euclidean distances between a selected base descriptor |
|
Uses luminance weights to transform RGB channel to greyscale, by |
|
Calculates all 8 Haralick descriptors based on co-occurrence input matrix. |
|
Calculate sample co-occurrence matrix based on input image |
|
Normalizes a 1D array, between ranges 0-cap. |
|
Normalizes image in Numpy 2D array format, between ranges 0-cap, |
|
Opening filter, defined as the sequence of |
|
Simple implementation of Root Mean Squared Error |
|
Simple image transformation using one of two available filter functions: |
Module Contents¶
- computer_vision.haralick_descriptors.binarize(image: numpy.ndarray, threshold: float = 127.0) numpy.ndarray ¶
Binarizes a grayscale image based on a given threshold value, setting values to 1 or 0 accordingly.
- Examples:
>>> binarize(np.array([[128, 255], [101, 156]])) array([[1, 1], [0, 1]]) >>> binarize(np.array([[0.07, 1], [0.51, 0.3]]), threshold=0.5) array([[0, 1], [1, 0]])
- computer_vision.haralick_descriptors.binary_mask(image_gray: numpy.ndarray, image_map: numpy.ndarray) tuple[numpy.ndarray, numpy.ndarray] ¶
Apply binary mask, or thresholding based on bit mask value (mapping mask is binary).
Returns the mapped true value mask and its complementary false value mask.
- Example:
>>> img = np.array([[[108, 201, 72], [255, 11, 127]], ... [[56, 56, 56], [128, 255, 107]]]) >>> gray = grayscale(img) >>> binary = binarize(gray) >>> morphological = opening_filter(binary) >>> binary_mask(gray, morphological) (array([[1, 1], [1, 1]], dtype=uint8), array([[158, 97], [ 56, 200]], dtype=uint8))
- computer_vision.haralick_descriptors.closing_filter(image: numpy.ndarray, kernel: numpy.ndarray | None = None) numpy.ndarray ¶
Opening filter, defined as the sequence of dilation and then erosion filter on the same image.
- Examples:
>>> img = np.array([[1, 0.5], [0.2, 0.7]]) >>> img = binarize(img, threshold=0.5) >>> closing_filter(img) array([[0, 0], [0, 0]], dtype=uint8)
- computer_vision.haralick_descriptors.euclidean(point_1: numpy.ndarray, point_2: numpy.ndarray) float ¶
Simple method for calculating the euclidean distance between two points, with type np.ndarray.
- Example:
>>> a = np.array([1, 0, -2]) >>> b = np.array([2, -1, 1]) >>> euclidean(a, b) 3.3166247903554
- computer_vision.haralick_descriptors.get_descriptors(masks: tuple[numpy.ndarray, numpy.ndarray], coordinate: tuple[int, int]) numpy.ndarray ¶
Calculate all Haralick descriptors for a sequence of different co-occurrence matrices, given input masks and coordinates.
- Example:
>>> img = np.array([[[108, 201, 72], [255, 11, 127]], ... [[56, 56, 56], [128, 255, 107]]]) >>> gray = grayscale(img) >>> binary = binarize(gray) >>> morphological = opening_filter(binary) >>> get_descriptors(binary_mask(gray, morphological), (0, 1)) array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])
- computer_vision.haralick_descriptors.get_distances(descriptors: numpy.ndarray, base: int) list[tuple[int, float]] ¶
Calculate all Euclidean distances between a selected base descriptor and all other Haralick descriptors The resulting comparison is return in decreasing order, showing which descriptor is the most similar to the selected base.
- Args:
descriptors: Haralick descriptors to compare with base index base: Haralick descriptor index to use as base when calculating respective euclidean distance to other descriptors.
- Returns:
Ordered distances between descriptors
- Example:
>>> index = 1 >>> img = np.array([[[108, 201, 72], [255, 11, 127]], ... [[56, 56, 56], [128, 255, 107]]]) >>> gray = grayscale(img) >>> binary = binarize(gray) >>> morphological = opening_filter(binary) >>> get_distances(get_descriptors( ... binary_mask(gray, morphological), (0, 1)), ... index) [(0, 0.0), (1, 0.0), (2, 0.0), (3, 0.0), (4, 0.0), (5, 0.0), (6, 0.0), (7, 0.0), (8, 0.0), (9, 0.0), (10, 0.0), (11, 0.0), (12, 0.0), (13, 0.0), (14, 0.0), (15, 0.0)]
- computer_vision.haralick_descriptors.grayscale(image: numpy.ndarray) numpy.ndarray ¶
Uses luminance weights to transform RGB channel to greyscale, by taking the dot product between the channel and the weights.
- Example:
>>> grayscale(np.array([[[108, 201, 72], [255, 11, 127]], ... [[56, 56, 56], [128, 255, 107]]])) array([[158, 97], [ 56, 200]], dtype=uint8)
- computer_vision.haralick_descriptors.haralick_descriptors(matrix: numpy.ndarray) list[float] ¶
Calculates all 8 Haralick descriptors based on co-occurrence input matrix. All descriptors are as follows: Maximum probability, Inverse Difference, Homogeneity, Entropy, Energy, Dissimilarity, Contrast and Correlation
- Args:
matrix: Co-occurrence matrix to use as base for calculating descriptors.
- Returns:
Reverse ordered list of resulting descriptors
- Example:
>>> img = np.array([[[108, 201, 72], [255, 11, 127]], ... [[56, 56, 56], [128, 255, 107]]]) >>> gray = grayscale(img) >>> binary = binarize(gray) >>> morphological = opening_filter(binary) >>> mask_1 = binary_mask(gray, morphological)[0] >>> concurrency = matrix_concurrency(mask_1, (0, 1)) >>> [float(f) for f in haralick_descriptors(concurrency)] [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
- computer_vision.haralick_descriptors.matrix_concurrency(image: numpy.ndarray, coordinate: tuple[int, int]) numpy.ndarray ¶
Calculate sample co-occurrence matrix based on input image as well as selected coordinates on image.
Implementation is made using basic iteration, as function to be performed (np.max) is non-linear and therefore not callable on the frequency domain.
- Example:
>>> img = np.array([[[108, 201, 72], [255, 11, 127]], ... [[56, 56, 56], [128, 255, 107]]]) >>> gray = grayscale(img) >>> binary = binarize(gray) >>> morphological = opening_filter(binary) >>> mask_1 = binary_mask(gray, morphological)[0] >>> matrix_concurrency(mask_1, (0, 1)) array([[0., 0.], [0., 0.]])
- computer_vision.haralick_descriptors.normalize_array(array: numpy.ndarray, cap: float = 1) numpy.ndarray ¶
Normalizes a 1D array, between ranges 0-cap.
- Args:
array: List containing values to be normalized between cap range. cap: Maximum cap amount for normalization.
- Returns:
return 1D numpy array, corresponding to limited range array
- Examples:
>>> normalize_array(np.array([2, 3, 5, 7])) array([0. , 0.2, 0.6, 1. ]) >>> normalize_array(np.array([[5], [7], [11], [13]])) array([[0. ], [0.25], [0.75], [1. ]])
- computer_vision.haralick_descriptors.normalize_image(image: numpy.ndarray, cap: float = 255.0, data_type: numpy.dtype = np.uint8) numpy.ndarray ¶
Normalizes image in Numpy 2D array format, between ranges 0-cap, as to fit uint8 type.
- Args:
image: 2D numpy array representing image as matrix, with values in any range cap: Maximum cap amount for normalization data_type: numpy data type to set output variable to
- Returns:
return 2D numpy array of type uint8, corresponding to limited range matrix
- Examples:
>>> normalize_image(np.array([[1, 2, 3], [4, 5, 10]]), ... cap=1.0, data_type=np.float64) array([[0. , 0.11111111, 0.22222222], [0.33333333, 0.44444444, 1. ]]) >>> normalize_image(np.array([[4, 4, 3], [1, 7, 2]])) array([[127, 127, 85], [ 0, 255, 42]], dtype=uint8)
- computer_vision.haralick_descriptors.opening_filter(image: numpy.ndarray, kernel: numpy.ndarray | None = None) numpy.ndarray ¶
Opening filter, defined as the sequence of erosion and then a dilation filter on the same image.
- Examples:
>>> img = np.array([[1, 0.5], [0.2, 0.7]]) >>> img = binarize(img, threshold=0.5) >>> opening_filter(img) array([[1, 1], [1, 1]], dtype=uint8)
- computer_vision.haralick_descriptors.root_mean_square_error(original: numpy.ndarray, reference: numpy.ndarray) float ¶
Simple implementation of Root Mean Squared Error for two N dimensional numpy arrays.
- Examples:
>>> root_mean_square_error(np.array([1, 2, 3]), np.array([1, 2, 3])) 0.0 >>> root_mean_square_error(np.array([1, 2, 3]), np.array([2, 2, 2])) 0.816496580927726 >>> root_mean_square_error(np.array([1, 2, 3]), np.array([6, 4, 2])) 3.1622776601683795
- computer_vision.haralick_descriptors.transform(image: numpy.ndarray, kind: str, kernel: numpy.ndarray | None = None) numpy.ndarray ¶
Simple image transformation using one of two available filter functions: Erosion and Dilation.
- Args:
image: binarized input image, onto which to apply transformation kind: Can be either ‘erosion’, in which case the :func:np.max
function is called, or ‘dilation’, when :func:np.min is used instead.
- kernel: n x n kernel with shape < :attr:image.shape,
to be used when applying convolution to original image
- Returns:
returns a numpy array with same shape as input image, corresponding to applied binary transformation.
- Examples:
>>> img = np.array([[1, 0.5], [0.2, 0.7]]) >>> img = binarize(img, threshold=0.5) >>> transform(img, 'erosion') array([[1, 1], [1, 1]], dtype=uint8) >>> transform(img, 'dilation') array([[0, 0], [0, 0]], dtype=uint8)
- computer_vision.haralick_descriptors.index¶