backtracking.minimax¶
Minimax helps to achieve maximum score in a game by checking all possible moves depth is current depth in game tree.
nodeIndex is index of current node in scores[]. if move is of maximizer return true else false leaves of game tree is stored in scores[] height is maximum height of Game tree
Functions¶
|
|
|
This function implements the minimax algorithm, which helps achieve the optimal |
Module Contents¶
- backtracking.minimax.main() None ¶
- backtracking.minimax.minimax(depth: int, node_index: int, is_max: bool, scores: list[int], height: float) int ¶
This function implements the minimax algorithm, which helps achieve the optimal score for a player in a two-player game by checking all possible moves. If the player is the maximizer, then the score is maximized. If the player is the minimizer, then the score is minimized.
Parameters: - depth: Current depth in the game tree. - node_index: Index of the current node in the scores list. - is_max: A boolean indicating whether the current move
is for the maximizer (True) or minimizer (False).
scores: A list containing the scores of the leaves of the game tree.
height: The maximum height of the game tree.
Returns: - An integer representing the optimal score for the current player.
>>> import math >>> scores = [90, 23, 6, 33, 21, 65, 123, 34423] >>> height = math.log(len(scores), 2) >>> minimax(0, 0, True, scores, height) 65 >>> minimax(-1, 0, True, scores, height) Traceback (most recent call last): ... ValueError: Depth cannot be less than 0 >>> minimax(0, 0, True, [], 2) Traceback (most recent call last): ... ValueError: Scores cannot be empty >>> scores = [3, 5, 2, 9, 12, 5, 23, 23] >>> height = math.log(len(scores), 2) >>> minimax(0, 0, True, scores, height) 12