audio_filters.iir_filter¶
Classes¶
N-Order IIR filter |
Module Contents¶
- class audio_filters.iir_filter.IIRFilter(order: int)¶
N-Order IIR filter Assumes working with float samples normalized on [-1, 1]
—
Implementation details: Based on the 2nd-order function from
this generalized N-order function was made.
Using the following transfer function H(z)=frac{b_{0}+b_{1}z^{-1}+b_{2}z^{-2}+…+b_{k}z^{-k}}{a_{0}+a_{1}z^{-1}+a_{2}z^{-2}+…+a_{k}z^{-k}} we can rewrite this to y[n]={frac{1}{a_{0}}}left(left(b_{0}x[n]+b_{1}x[n-1]+b_{2}x[n-2]+…+b_{k}x[n-k]right)-left(a_{1}y[n-1]+a_{2}y[n-2]+…+a_{k}y[n-k]right)right)
- process(sample: float) float ¶
Calculate y[n]
>>> filt = IIRFilter(2) >>> filt.process(0) 0.0
- set_coefficients(a_coeffs: list[float], b_coeffs: list[float]) None ¶
Set the coefficients for the IIR filter. These should both be of size order + 1. a_0 may be left out, and it will use 1.0 as default value.
- This method works well with scipy’s filter design functions
>>> # Make a 2nd-order 1000Hz butterworth lowpass filter >>> import scipy.signal >>> b_coeffs, a_coeffs = scipy.signal.butter(2, 1000, ... btype='lowpass', ... fs=48000) >>> filt = IIRFilter(2) >>> filt.set_coefficients(a_coeffs, b_coeffs)
- a_coeffs¶
- b_coeffs¶
- input_history¶
- order¶
- output_history¶