project_euler.problem_800.sol1 ============================== .. py:module:: project_euler.problem_800.sol1 .. autoapi-nested-parse:: Project Euler Problem 800: https://projecteuler.net/problem=800 An integer of the form p^q q^p with prime numbers p != q is called a hybrid-integer. For example, 800 = 2^5 5^2 is a hybrid-integer. We define C(n) to be the number of hybrid-integers less than or equal to n. You are given C(800) = 2 and C(800^800) = 10790 Find C(800800^800800) Functions --------- .. autoapisummary:: project_euler.problem_800.sol1.calculate_prime_numbers project_euler.problem_800.sol1.solution Module Contents --------------- .. py:function:: calculate_prime_numbers(max_number: int) -> list[int] Returns prime numbers below max_number >>> calculate_prime_numbers(10) [2, 3, 5, 7] .. py:function:: solution(base: int = 800800, degree: int = 800800) -> int Returns the number of hybrid-integers less than or equal to base^degree >>> solution(800, 1) 2 >>> solution(800, 800) 10790