project_euler.problem_131.sol1 ============================== .. py:module:: project_euler.problem_131.sol1 .. autoapi-nested-parse:: Project Euler Problem 131: https://projecteuler.net/problem=131 There are some prime values, p, for which there exists a positive integer, n, such that the expression n^3 + n^2p is a perfect cube. For example, when p = 19, 8^3 + 8^2 x 19 = 12^3. What is perhaps most surprising is that for each prime with this property the value of n is unique, and there are only four such primes below one-hundred. How many primes below one million have this remarkable property? Functions --------- .. autoapisummary:: project_euler.problem_131.sol1.is_prime project_euler.problem_131.sol1.solution Module Contents --------------- .. py:function:: is_prime(number: int) -> bool Determines whether number is prime >>> is_prime(3) True >>> is_prime(4) False .. py:function:: solution(max_prime: int = 10**6) -> int Returns number of primes below max_prime with the property >>> solution(100) 4