project_euler.problem_104.sol1 ============================== .. py:module:: project_euler.problem_104.sol1 .. autoapi-nested-parse:: Project Euler Problem 104 : https://projecteuler.net/problem=104 The Fibonacci sequence is defined by the recurrence relation: Fn = Fn-1 + Fn-2, where F1 = 1 and F2 = 1. It turns out that F541, which contains 113 digits, is the first Fibonacci number for which the last nine digits are 1-9 pandigital (contain all the digits 1 to 9, but not necessarily in order). And F2749, which contains 575 digits, is the first Fibonacci number for which the first nine digits are 1-9 pandigital. Given that Fk is the first Fibonacci number for which the first nine digits AND the last nine digits are 1-9 pandigital, find k. Functions --------- .. autoapisummary:: project_euler.problem_104.sol1.check project_euler.problem_104.sol1.check1 project_euler.problem_104.sol1.solution Module Contents --------------- .. py:function:: check(number: int) -> bool Takes a number and checks if it is pandigital both from start and end >>> check(123456789987654321) True >>> check(120000987654321) False >>> check(1234567895765677987654321) True .. py:function:: check1(number: int) -> bool Takes a number and checks if it is pandigital from END >>> check1(123456789987654321) True >>> check1(120000987654321) True >>> check1(12345678957656779870004321) False .. py:function:: solution() -> int Outputs the answer is the least Fibonacci number pandigital from both sides. >>> solution() 329468