project_euler.problem_074.sol2 ============================== .. py:module:: project_euler.problem_074.sol2 .. autoapi-nested-parse:: Project Euler Problem 074: https://projecteuler.net/problem=74 The number 145 is well known for the property that the sum of the factorial of its digits is equal to 145: 1! + 4! + 5! = 1 + 24 + 120 = 145 Perhaps less well known is 169, in that it produces the longest chain of numbers that link back to 169; it turns out that there are only three such loops that exist: 169 → 363601 → 1454 → 169 871 → 45361 → 871 872 → 45362 → 872 It is not difficult to prove that EVERY starting number will eventually get stuck in a loop. For example, 69 → 363600 → 1454 → 169 → 363601 (→ 1454) 78 → 45360 → 871 → 45361 (→ 871) 540 → 145 (→ 145) Starting with 69 produces a chain of five non-repeating terms, but the longest non-repeating chain with a starting number below one million is sixty terms. How many chains, with a starting number below one million, contain exactly sixty non-repeating terms? Solution approach: This solution simply consists in a loop that generates the chains of non repeating items using the cached sizes of the previous chains. The generation of the chain stops before a repeating item or if the size of the chain is greater then the desired one. After generating each chain, the length is checked and the counter increases. Attributes ---------- .. autoapisummary:: project_euler.problem_074.sol2.DIGIT_FACTORIAL Functions --------- .. autoapisummary:: project_euler.problem_074.sol2.digit_factorial_sum project_euler.problem_074.sol2.solution Module Contents --------------- .. py:function:: digit_factorial_sum(number: int) -> int Function to perform the sum of the factorial of all the digits in number >>> digit_factorial_sum(69.0) Traceback (most recent call last): ... TypeError: Parameter number must be int >>> digit_factorial_sum(-1) Traceback (most recent call last): ... ValueError: Parameter number must be greater than or equal to 0 >>> digit_factorial_sum(0) 1 >>> digit_factorial_sum(69) 363600 .. py:function:: solution(chain_length: int = 60, number_limit: int = 1000000) -> int Returns the number of numbers below number_limit that produce chains with exactly chain_length non repeating elements. >>> solution(10.0, 1000) Traceback (most recent call last): ... TypeError: Parameters chain_length and number_limit must be int >>> solution(10, 1000.0) Traceback (most recent call last): ... TypeError: Parameters chain_length and number_limit must be int >>> solution(0, 1000) Traceback (most recent call last): ... ValueError: Parameters chain_length and number_limit must be greater than 0 >>> solution(10, 0) Traceback (most recent call last): ... ValueError: Parameters chain_length and number_limit must be greater than 0 >>> solution(10, 1000) 26 .. py:data:: DIGIT_FACTORIAL :type: dict[str, int]