project_euler.problem_053.sol1 ============================== .. py:module:: project_euler.problem_053.sol1 .. autoapi-nested-parse:: Combinatoric selections Problem 53 There are exactly ten ways of selecting three from five, 12345: 123, 124, 125, 134, 135, 145, 234, 235, 245, and 345 In combinatorics, we use the notation, 5C3 = 10. In general, nCr = n!/(r!(n-r)!),where r ≤ n, n! = nx(n-1)x...x3x2x1, and 0! = 1. It is not until n = 23, that a value exceeds one-million: 23C10 = 1144066. How many, not necessarily distinct, values of nCr, for 1 ≤ n ≤ 100, are greater than one-million? Functions --------- .. autoapisummary:: project_euler.problem_053.sol1.combinations project_euler.problem_053.sol1.solution Module Contents --------------- .. py:function:: combinations(n, r) .. py:function:: solution() Returns the number of values of nCr, for 1 ≤ n ≤ 100, are greater than one-million >>> solution() 4075