project_euler.problem_027.sol1 ============================== .. py:module:: project_euler.problem_027.sol1 .. autoapi-nested-parse:: Project Euler Problem 27 https://projecteuler.net/problem=27 Problem Statement: Euler discovered the remarkable quadratic formula: n2 + n + 41 It turns out that the formula will produce 40 primes for the consecutive values n = 0 to 39. However, when n = 40, 402 + 40 + 41 = 40(40 + 1) + 41 is divisible by 41, and certainly when n = 41, 412 + 41 + 41 is clearly divisible by 41. The incredible formula n2 - 79n + 1601 was discovered, which produces 80 primes for the consecutive values n = 0 to 79. The product of the coefficients, -79 and 1601, is -126479. Considering quadratics of the form: n² + an + b, where |a| < 1000 and |b| < 1000 where |n| is the modulus/absolute value of ne.g. |11| = 11 and |-4| = 4 Find the product of the coefficients, a and b, for the quadratic expression that produces the maximum number of primes for consecutive values of n, starting with n = 0. Functions --------- .. autoapisummary:: project_euler.problem_027.sol1.is_prime project_euler.problem_027.sol1.solution Module Contents --------------- .. py:function:: is_prime(number: int) -> bool Checks to see if a number is a prime in O(sqrt(n)). A number is prime if it has exactly two factors: 1 and itself. Returns boolean representing primality of given number num (i.e., if the result is true, then the number is indeed prime else it is not). >>> is_prime(2) True >>> is_prime(3) True >>> is_prime(27) False >>> is_prime(2999) True >>> is_prime(0) False >>> is_prime(1) False >>> is_prime(-10) False .. py:function:: solution(a_limit: int = 1000, b_limit: int = 1000) -> int >>> solution(1000, 1000) -59231 >>> solution(200, 1000) -59231 >>> solution(200, 200) -4925 >>> solution(-1000, 1000) 0 >>> solution(-1000, -1000) 0