other.scoring_algorithm ======================= .. py:module:: other.scoring_algorithm .. autoapi-nested-parse:: | developed by: markmelnic | original repo: https://github.com/markmelnic/Scoring-Algorithm Analyse data using a range based percentual proximity algorithm and calculate the linear maximum likelihood estimation. The basic principle is that all values supplied will be broken down to a range from ``0`` to ``1`` and each column's score will be added up to get the total score. Example for data of vehicles :: price|mileage|registration_year 20k |60k |2012 22k |50k |2011 23k |90k |2015 16k |210k |2010 We want the vehicle with the lowest price, lowest mileage but newest registration year. Thus the weights for each column are as follows: ``[0, 0, 1]`` Functions --------- .. autoapisummary:: other.scoring_algorithm.calculate_each_score other.scoring_algorithm.generate_final_scores other.scoring_algorithm.get_data other.scoring_algorithm.procentual_proximity Module Contents --------------- .. py:function:: calculate_each_score(data_lists: list[list[float]], weights: list[int]) -> list[list[float]] >>> calculate_each_score([[20, 23, 22], [60, 90, 50], [2012, 2015, 2011]], ... [0, 0, 1]) [[1.0, 0.0, 0.33333333333333337], [0.75, 0.0, 1.0], [0.25, 1.0, 0.0]] .. py:function:: generate_final_scores(score_lists: list[list[float]]) -> list[float] >>> generate_final_scores([[1.0, 0.0, 0.33333333333333337], ... [0.75, 0.0, 1.0], ... [0.25, 1.0, 0.0]]) [2.0, 1.0, 1.3333333333333335] .. py:function:: get_data(source_data: list[list[float]]) -> list[list[float]] >>> get_data([[20, 60, 2012],[23, 90, 2015],[22, 50, 2011]]) [[20.0, 23.0, 22.0], [60.0, 90.0, 50.0], [2012.0, 2015.0, 2011.0]] .. py:function:: procentual_proximity(source_data: list[list[float]], weights: list[int]) -> list[list[float]] | `weights` - ``int`` list | possible values - ``0`` / ``1`` * ``0`` if lower values have higher weight in the data set * ``1`` if higher values have higher weight in the data set >>> procentual_proximity([[20, 60, 2012],[23, 90, 2015],[22, 50, 2011]], [0, 0, 1]) [[20, 60, 2012, 2.0], [23, 90, 2015, 1.0], [22, 50, 2011, 1.3333333333333335]]