neural_network.activation_functions.soboleva_modified_hyperbolic_tangent ======================================================================== .. py:module:: neural_network.activation_functions.soboleva_modified_hyperbolic_tangent .. autoapi-nested-parse:: This script implements the Soboleva Modified Hyperbolic Tangent function. The function applies the Soboleva Modified Hyperbolic Tangent function to each element of the vector. More details about the activation function can be found on: https://en.wikipedia.org/wiki/Soboleva_modified_hyperbolic_tangent Functions --------- .. autoapisummary:: neural_network.activation_functions.soboleva_modified_hyperbolic_tangent.soboleva_modified_hyperbolic_tangent Module Contents --------------- .. py:function:: soboleva_modified_hyperbolic_tangent(vector: numpy.ndarray, a_value: float, b_value: float, c_value: float, d_value: float) -> numpy.ndarray Implements the Soboleva Modified Hyperbolic Tangent function Parameters: vector (ndarray): A vector that consists of numeric values a_value (float): parameter a of the equation b_value (float): parameter b of the equation c_value (float): parameter c of the equation d_value (float): parameter d of the equation Returns: vector (ndarray): Input array after applying SMHT function >>> vector = np.array([5.4, -2.4, 6.3, -5.23, 3.27, 0.56]) >>> soboleva_modified_hyperbolic_tangent(vector, 0.2, 0.4, 0.6, 0.8) array([ 0.11075085, -0.28236685, 0.07861169, -0.1180085 , 0.22999056, 0.1566043 ])