maths.special_numbers.carmichael_number ======================================= .. py:module:: maths.special_numbers.carmichael_number .. autoapi-nested-parse:: == Carmichael Numbers == A number n is said to be a Carmichael number if it satisfies the following modular arithmetic condition: power(b, n-1) MOD n = 1, for all b ranging from 1 to n such that b and n are relatively prime, i.e, gcd(b, n) = 1 Examples of Carmichael Numbers: 561, 1105, ... https://en.wikipedia.org/wiki/Carmichael_number Attributes ---------- .. autoapisummary:: maths.special_numbers.carmichael_number.number Functions --------- .. autoapisummary:: maths.special_numbers.carmichael_number.is_carmichael_number maths.special_numbers.carmichael_number.power Module Contents --------------- .. py:function:: is_carmichael_number(n: int) -> bool Examples: >>> is_carmichael_number(4) False >>> is_carmichael_number(561) True >>> is_carmichael_number(562) False >>> is_carmichael_number(900) False >>> is_carmichael_number(1105) True >>> is_carmichael_number(8911) True >>> is_carmichael_number(5.1) Traceback (most recent call last): ... ValueError: Number 5.1 must instead be a positive integer >>> is_carmichael_number(-7) Traceback (most recent call last): ... ValueError: Number -7 must instead be a positive integer >>> is_carmichael_number(0) Traceback (most recent call last): ... ValueError: Number 0 must instead be a positive integer .. py:function:: power(x: int, y: int, mod: int) -> int Examples: >>> power(2, 15, 3) 2 >>> power(5, 1, 30) 5 .. py:data:: number