maths.numerical_analysis.runge_kutta_gills ========================================== .. py:module:: maths.numerical_analysis.runge_kutta_gills .. autoapi-nested-parse:: Use the Runge-Kutta-Gill's method of order 4 to solve Ordinary Differential Equations. https://www.geeksforgeeks.org/gills-4th-order-method-to-solve-differential-equations/ Author : Ravi Kumar Functions --------- .. autoapisummary:: maths.numerical_analysis.runge_kutta_gills.runge_kutta_gills Module Contents --------------- .. py:function:: runge_kutta_gills(func: collections.abc.Callable[[float, float], float], x_initial: float, y_initial: float, step_size: float, x_final: float) -> numpy.ndarray Solve an Ordinary Differential Equations using Runge-Kutta-Gills Method of order 4. args: func: An ordinary differential equation (ODE) as function of x and y. x_initial: The initial value of x. y_initial: The initial value of y. step_size: The increment value of x. x_final: The final value of x. Returns: Solution of y at each nodal point >>> def f(x, y): ... return (x-y)/2 >>> y = runge_kutta_gills(f, 0, 3, 0.2, 5) >>> float(y[-1]) 3.4104259225717537 >>> def f(x,y): ... return x >>> y = runge_kutta_gills(f, -1, 0, 0.2, 0) >>> y array([ 0. , -0.18, -0.32, -0.42, -0.48, -0.5 ]) >>> def f(x, y): ... return x + y >>> y = runge_kutta_gills(f, 0, 0, 0.2, -1) Traceback (most recent call last): ... ValueError: The final value of x must be greater than initial value of x. >>> def f(x, y): ... return x >>> y = runge_kutta_gills(f, -1, 0, -0.2, 0) Traceback (most recent call last): ... ValueError: Step size must be positive.