graphs.a_star ============= .. py:module:: graphs.a_star Attributes ---------- .. autoapisummary:: graphs.a_star.DIRECTIONS graphs.a_star.grid Functions --------- .. autoapisummary:: graphs.a_star.search Module Contents --------------- .. py:function:: search(grid: list[list[int]], init: list[int], goal: list[int], cost: int, heuristic: list[list[int]]) -> tuple[list[list[int]], list[list[int]]] Search for a path on a grid avoiding obstacles. >>> grid = [[0, 1, 0, 0, 0, 0], ... [0, 1, 0, 0, 0, 0], ... [0, 1, 0, 0, 0, 0], ... [0, 1, 0, 0, 1, 0], ... [0, 0, 0, 0, 1, 0]] >>> init = [0, 0] >>> goal = [len(grid) - 1, len(grid[0]) - 1] >>> cost = 1 >>> heuristic = [[0] * len(grid[0]) for _ in range(len(grid))] >>> heuristic = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] >>> for i in range(len(grid)): ... for j in range(len(grid[0])): ... heuristic[i][j] = abs(i - goal[0]) + abs(j - goal[1]) ... if grid[i][j] == 1: ... heuristic[i][j] = 99 >>> path, action = search(grid, init, goal, cost, heuristic) >>> path # doctest: +NORMALIZE_WHITESPACE [[0, 0], [1, 0], [2, 0], [3, 0], [4, 0], [4, 1], [4, 2], [4, 3], [3, 3], [2, 3], [2, 4], [2, 5], [3, 5], [4, 5]] >>> action # doctest: +NORMALIZE_WHITESPACE [[0, 0, 0, 0, 0, 0], [2, 0, 0, 0, 0, 0], [2, 0, 0, 0, 3, 3], [2, 0, 0, 0, 0, 2], [2, 3, 3, 3, 0, 2]] .. py:data:: DIRECTIONS .. py:data:: grid :value: [[0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0]]