fractals.sierpinski_triangle ============================ .. py:module:: fractals.sierpinski_triangle .. autoapi-nested-parse:: Author Anurag Kumar | anuragkumarak95@gmail.com | git/anuragkumarak95 Simple example of fractal generation using recursion. What is the Sierpiński Triangle? The Sierpiński triangle (sometimes spelled Sierpinski), also called the Sierpiński gasket or Sierpiński sieve, is a fractal attractive fixed set with the overall shape of an equilateral triangle, subdivided recursively into smaller equilateral triangles. Originally constructed as a curve, this is one of the basic examples of self-similar sets—that is, it is a mathematically generated pattern that is reproducible at any magnification or reduction. It is named after the Polish mathematician Wacław Sierpiński, but appeared as a decorative pattern many centuries before the work of Sierpiński. Usage: python sierpinski_triangle.py Credits: The above description is taken from https://en.wikipedia.org/wiki/Sierpi%C5%84ski_triangle This code was written by editing the code from https://www.riannetrujillo.com/blog/python-fractal/ Attributes ---------- .. autoapisummary:: fractals.sierpinski_triangle.my_pen Functions --------- .. autoapisummary:: fractals.sierpinski_triangle.get_mid fractals.sierpinski_triangle.triangle Module Contents --------------- .. py:function:: get_mid(p1: tuple[float, float], p2: tuple[float, float]) -> tuple[float, float] Find the midpoint of two points >>> get_mid((0, 0), (2, 2)) (1.0, 1.0) >>> get_mid((-3, -3), (3, 3)) (0.0, 0.0) >>> get_mid((1, 0), (3, 2)) (2.0, 1.0) >>> get_mid((0, 0), (1, 1)) (0.5, 0.5) >>> get_mid((0, 0), (0, 0)) (0.0, 0.0) .. py:function:: triangle(vertex1: tuple[float, float], vertex2: tuple[float, float], vertex3: tuple[float, float], depth: int) -> None Recursively draw the Sierpinski triangle given the vertices of the triangle and the recursion depth .. py:data:: my_pen