dynamic_programming.max_subarray_sum ==================================== .. py:module:: dynamic_programming.max_subarray_sum .. autoapi-nested-parse:: The maximum subarray sum problem is the task of finding the maximum sum that can be obtained from a contiguous subarray within a given array of numbers. For example, given the array [-2, 1, -3, 4, -1, 2, 1, -5, 4], the contiguous subarray with the maximum sum is [4, -1, 2, 1], so the maximum subarray sum is 6. Kadane's algorithm is a simple dynamic programming algorithm that solves the maximum subarray sum problem in O(n) time and O(1) space. Reference: https://en.wikipedia.org/wiki/Maximum_subarray_problem Attributes ---------- .. autoapisummary:: dynamic_programming.max_subarray_sum.nums Functions --------- .. autoapisummary:: dynamic_programming.max_subarray_sum.max_subarray_sum Module Contents --------------- .. py:function:: max_subarray_sum(arr: collections.abc.Sequence[float], allow_empty_subarrays: bool = False) -> float Solves the maximum subarray sum problem using Kadane's algorithm. :param arr: the given array of numbers :param allow_empty_subarrays: if True, then the algorithm considers empty subarrays >>> max_subarray_sum([2, 8, 9]) 19 >>> max_subarray_sum([0, 0]) 0 >>> max_subarray_sum([-1.0, 0.0, 1.0]) 1.0 >>> max_subarray_sum([1, 2, 3, 4, -2]) 10 >>> max_subarray_sum([-2, 1, -3, 4, -1, 2, 1, -5, 4]) 6 >>> max_subarray_sum([2, 3, -9, 8, -2]) 8 >>> max_subarray_sum([-2, -3, -1, -4, -6]) -1 >>> max_subarray_sum([-2, -3, -1, -4, -6], allow_empty_subarrays=True) 0 >>> max_subarray_sum([]) 0 .. py:data:: nums