dynamic_programming.edit_distance ================================= .. py:module:: dynamic_programming.edit_distance .. autoapi-nested-parse:: Author : Turfa Auliarachman Date : October 12, 2016 This is a pure Python implementation of Dynamic Programming solution to the edit distance problem. The problem is : Given two strings A and B. Find the minimum number of operations to string B such that A = B. The permitted operations are removal, insertion, and substitution. Attributes ---------- .. autoapisummary:: dynamic_programming.edit_distance.solver Classes ------- .. autoapisummary:: dynamic_programming.edit_distance.EditDistance Module Contents --------------- .. py:class:: EditDistance Use : solver = EditDistance() editDistanceResult = solver.solve(firstString, secondString) .. py:method:: __min_dist_top_down_dp(m: int, n: int) -> int .. py:method:: min_dist_bottom_up(word1: str, word2: str) -> int >>> EditDistance().min_dist_bottom_up("intention", "execution") 5 >>> EditDistance().min_dist_bottom_up("intention", "") 9 >>> EditDistance().min_dist_bottom_up("", "") 0 .. py:method:: min_dist_top_down(word1: str, word2: str) -> int >>> EditDistance().min_dist_top_down("intention", "execution") 5 >>> EditDistance().min_dist_top_down("intention", "") 9 >>> EditDistance().min_dist_top_down("", "") 0 .. py:attribute:: dp :value: [] .. py:attribute:: word1 :value: '' .. py:attribute:: word2 :value: '' .. py:data:: solver