data_structures.hashing.double_hash =================================== .. py:module:: data_structures.hashing.double_hash .. autoapi-nested-parse:: Double hashing is a collision resolving technique in Open Addressed Hash tables. Double hashing uses the idea of applying a second hash function to key when a collision occurs. The advantage of Double hashing is that it is one of the best form of probing, producing a uniform distribution of records throughout a hash table. This technique does not yield any clusters. It is one of effective method for resolving collisions. Double hashing can be done using: (hash1(key) + i * hash2(key)) % TABLE_SIZE Where hash1() and hash2() are hash functions and TABLE_SIZE is size of hash table. Reference: https://en.wikipedia.org/wiki/Double_hashing Classes ------- .. autoapisummary:: data_structures.hashing.double_hash.DoubleHash Module Contents --------------- .. py:class:: DoubleHash(*args, **kwargs) Bases: :py:obj:`data_structures.hashing.hash_table.HashTable` Hash Table example with open addressing and Double Hash .. py:method:: __hash_double_function(key, data, increment) .. py:method:: __hash_function_2(value, data) .. py:method:: _collision_resolution(key, data=None) Examples: 1. Try to add three data elements when the size is three >>> dh = DoubleHash(3) >>> dh.insert_data(10) >>> dh.insert_data(20) >>> dh.insert_data(30) >>> dh.keys() {1: 10, 2: 20, 0: 30} 2. Try to add three data elements when the size is two >>> dh = DoubleHash(2) >>> dh.insert_data(10) >>> dh.insert_data(20) >>> dh.insert_data(30) >>> dh.keys() {10: 10, 9: 20, 8: 30} 3. Try to add three data elements when the size is four >>> dh = DoubleHash(4) >>> dh.insert_data(10) >>> dh.insert_data(20) >>> dh.insert_data(30) >>> dh.keys() {9: 20, 10: 10, 8: 30}