data_structures.binary_tree.inorder_tree_traversal_2022 ======================================================= .. py:module:: data_structures.binary_tree.inorder_tree_traversal_2022 .. autoapi-nested-parse:: Illustrate how to implement inorder traversal in binary search tree. Author: Gurneet Singh https://www.geeksforgeeks.org/tree-traversals-inorder-preorder-and-postorder/ Classes ------- .. autoapisummary:: data_structures.binary_tree.inorder_tree_traversal_2022.BinaryTreeNode Functions --------- .. autoapisummary:: data_structures.binary_tree.inorder_tree_traversal_2022.inorder data_structures.binary_tree.inorder_tree_traversal_2022.insert data_structures.binary_tree.inorder_tree_traversal_2022.main data_structures.binary_tree.inorder_tree_traversal_2022.make_tree Module Contents --------------- .. py:class:: BinaryTreeNode(data: int) Defining the structure of BinaryTreeNode .. py:attribute:: data .. py:attribute:: left_child :type: BinaryTreeNode | None :value: None .. py:attribute:: right_child :type: BinaryTreeNode | None :value: None .. py:function:: inorder(node: None | BinaryTreeNode) -> list[int] >>> inorder(make_tree()) [6, 10, 14, 15, 20, 25, 60] .. py:function:: insert(node: BinaryTreeNode | None, new_value: int) -> BinaryTreeNode | None If the binary search tree is empty, make a new node and declare it as root. >>> node_a = BinaryTreeNode(12345) >>> node_b = insert(node_a, 67890) >>> node_a.left_child == node_b.left_child True >>> node_a.right_child == node_b.right_child True >>> node_a.data == node_b.data True .. py:function:: main() -> None .. py:function:: make_tree() -> BinaryTreeNode | None