data_structures.binary_tree.fenwick_tree ======================================== .. py:module:: data_structures.binary_tree.fenwick_tree Classes ------- .. autoapisummary:: data_structures.binary_tree.fenwick_tree.FenwickTree Module Contents --------------- .. py:class:: FenwickTree(arr: list[int] | None = None, size: int | None = None) Fenwick Tree More info: https://en.wikipedia.org/wiki/Fenwick_tree .. py:method:: add(index: int, value: int) -> None Add a value to index in O(lg N) Parameters: index (int): index to add value to value (int): value to add to index Returns: None >>> f = FenwickTree([1, 2, 3, 4, 5]) >>> f.add(0, 1) >>> f.add(1, 2) >>> f.add(2, 3) >>> f.add(3, 4) >>> f.add(4, 5) >>> f.get_array() [2, 4, 6, 8, 10] .. py:method:: get(index: int) -> int Get value at index in O(lg N) Parameters: index (int): index to get the value Returns: int: Value of element at index >>> a = [i for i in range(128)] >>> f = FenwickTree(a) >>> res = True >>> for i in range(len(a)): ... res = res and f.get(i) == a[i] >>> res True .. py:method:: get_array() -> list[int] Get the Normal Array of the Fenwick tree in O(N) Returns: list: Normal Array of the Fenwick tree >>> a = [i for i in range(128)] >>> f = FenwickTree(a) >>> f.get_array() == a True .. py:method:: init(arr: list[int]) -> None Initialize the Fenwick tree with arr in O(N) Parameters: arr (list): list of elements to initialize the tree with Returns: None >>> a = [1, 2, 3, 4, 5] >>> f1 = FenwickTree(a) >>> f2 = FenwickTree(size=len(a)) >>> for index, value in enumerate(a): ... f2.add(index, value) >>> f1.tree == f2.tree True .. py:method:: next_(index: int) -> int :staticmethod: .. py:method:: prefix(right: int) -> int Prefix sum of all elements in [0, right) in O(lg N) Parameters: right (int): right bound of the query (exclusive) Returns: int: sum of all elements in [0, right) >>> a = [i for i in range(128)] >>> f = FenwickTree(a) >>> res = True >>> for i in range(len(a)): ... res = res and f.prefix(i) == sum(a[:i]) >>> res True .. py:method:: prev(index: int) -> int :staticmethod: .. py:method:: query(left: int, right: int) -> int Query the sum of all elements in [left, right) in O(lg N) Parameters: left (int): left bound of the query (inclusive) right (int): right bound of the query (exclusive) Returns: int: sum of all elements in [left, right) >>> a = [i for i in range(128)] >>> f = FenwickTree(a) >>> res = True >>> for i in range(len(a)): ... for j in range(i + 1, len(a)): ... res = res and f.query(i, j) == sum(a[i:j]) >>> res True .. py:method:: rank_query(value: int) -> int Find the largest index with prefix(i) <= value in O(lg N) NOTE: Requires that all values are non-negative! Parameters: value (int): value to find the largest index of Returns: -1: if value is smaller than all elements in prefix sum int: largest index with prefix(i) <= value >>> f = FenwickTree([1, 2, 0, 3, 0, 5]) >>> f.rank_query(0) -1 >>> f.rank_query(2) 0 >>> f.rank_query(1) 0 >>> f.rank_query(3) 2 >>> f.rank_query(5) 2 >>> f.rank_query(6) 4 >>> f.rank_query(11) 5 .. py:method:: update(index: int, value: int) -> None Set the value of index in O(lg N) Parameters: index (int): index to set value to value (int): value to set in index Returns: None >>> f = FenwickTree([5, 4, 3, 2, 1]) >>> f.update(0, 1) >>> f.update(1, 2) >>> f.update(2, 3) >>> f.update(3, 4) >>> f.update(4, 5) >>> f.get_array() [1, 2, 3, 4, 5]