data_structures.arrays.kth_largest_element ========================================== .. py:module:: data_structures.arrays.kth_largest_element .. autoapi-nested-parse:: Given an array of integers and an integer k, find the kth largest element in the array. https://stackoverflow.com/questions/251781 Functions --------- .. autoapisummary:: data_structures.arrays.kth_largest_element.kth_largest_element data_structures.arrays.kth_largest_element.partition Module Contents --------------- .. py:function:: kth_largest_element(arr: list[int], position: int) -> int Finds the kth largest element in a list. Should deliver similar results to: ```python def kth_largest_element(arr, position): return sorted(arr)[-position] ``` Args: nums: The list of numbers. k: The position of the desired kth largest element. Returns: int: The kth largest element. Examples: >>> kth_largest_element([3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5], 3) 5 >>> kth_largest_element([2, 5, 6, 1, 9, 3, 8, 4, 7, 3, 5], 1) 9 >>> kth_largest_element([2, 5, 6, 1, 9, 3, 8, 4, 7, 3, 5], -2) Traceback (most recent call last): ... ValueError: Invalid value of 'position' >>> kth_largest_element([9, 1, 3, 6, 7, 9, 8, 4, 2, 4, 9], 110) Traceback (most recent call last): ... ValueError: Invalid value of 'position' >>> kth_largest_element([1, 2, 4, 3, 5, 9, 7, 6, 5, 9, 3], 0) Traceback (most recent call last): ... ValueError: Invalid value of 'position' >>> kth_largest_element(['apple', 'cherry', 'date', 'banana'], 2) 'cherry' >>> kth_largest_element([3.1, 1.2, 5.6, 4.7,7.9,5,0], 2) 5.6 >>> kth_largest_element([-2, -5, -4, -1], 1) -1 >>> kth_largest_element([], 1) -1 >>> kth_largest_element([3.1, 1.2, 5.6, 4.7, 7.9, 5, 0], 1.5) Traceback (most recent call last): ... ValueError: The position should be an integer >>> kth_largest_element((4, 6, 1, 2), 4) Traceback (most recent call last): ... TypeError: 'tuple' object does not support item assignment .. py:function:: partition(arr: list[int], low: int, high: int) -> int Partitions list based on the pivot element. This function rearranges the elements in the input list 'elements' such that all elements greater than or equal to the chosen pivot are on the right side of the pivot, and all elements smaller than the pivot are on the left side. Args: arr: The list to be partitioned low: The lower index of the list high: The higher index of the list Returns: int: The index of pivot element after partitioning Examples: >>> partition([3, 1, 4, 5, 9, 2, 6, 5, 3, 5], 0, 9) 4 >>> partition([7, 1, 4, 5, 9, 2, 6, 5, 8], 0, 8) 1 >>> partition(['apple', 'cherry', 'date', 'banana'], 0, 3) 2 >>> partition([3.1, 1.2, 5.6, 4.7], 0, 3) 1