backtracking.power_sum ====================== .. py:module:: backtracking.power_sum .. autoapi-nested-parse:: Problem source: https://www.hackerrank.com/challenges/the-power-sum/problem Find the number of ways that a given integer X, can be expressed as the sum of the Nth powers of unique, natural numbers. For example, if X=13 and N=2. We have to find all combinations of unique squares adding up to 13. The only solution is 2^2+3^2. Constraints: 1<=X<=1000, 2<=N<=10. Functions --------- .. autoapisummary:: backtracking.power_sum.backtrack backtracking.power_sum.solve Module Contents --------------- .. py:function:: backtrack(needed_sum: int, power: int, current_number: int, current_sum: int, solutions_count: int) -> tuple[int, int] >>> backtrack(13, 2, 1, 0, 0) (0, 1) >>> backtrack(10, 2, 1, 0, 0) (0, 1) >>> backtrack(10, 3, 1, 0, 0) (0, 0) >>> backtrack(20, 2, 1, 0, 0) (0, 1) >>> backtrack(15, 10, 1, 0, 0) (0, 0) >>> backtrack(16, 2, 1, 0, 0) (0, 1) >>> backtrack(20, 1, 1, 0, 0) (0, 64) .. py:function:: solve(needed_sum: int, power: int) -> int >>> solve(13, 2) 1 >>> solve(10, 2) 1 >>> solve(10, 3) 0 >>> solve(20, 2) 1 >>> solve(15, 10) 0 >>> solve(16, 2) 1 >>> solve(20, 1) Traceback (most recent call last): ... ValueError: Invalid input needed_sum must be between 1 and 1000, power between 2 and 10. >>> solve(-10, 5) Traceback (most recent call last): ... ValueError: Invalid input needed_sum must be between 1 and 1000, power between 2 and 10.