TheAlgorithms/C++ 1.0.0
All the algorithms implemented in C++
Loading...
Searching...
No Matches
ode_forward_euler.cpp
Go to the documentation of this file.
1
39#include <cmath>
40#include <ctime>
41#include <fstream>
42#include <iostream>
43#include <valarray>
44
54void problem(const double &x, std::valarray<double> *y,
55 std::valarray<double> *dy) {
56 const double omega = 1.F; // some const for the problem
57 (*dy)[0] = (*y)[1]; // x dot // NOLINT
58 (*dy)[1] = -omega * omega * (*y)[0]; // y dot // NOLINT
59}
60
67void exact_solution(const double &x, std::valarray<double> *y) {
68 y[0][0] = std::cos(x);
69 y[0][1] = -std::sin(x);
70}
71
86void forward_euler_step(const double dx, const double x,
87 std::valarray<double> *y, std::valarray<double> *dy) {
88 problem(x, y, dy);
89 *y += *dy * dx;
90}
91
102double forward_euler(double dx, double x0, double x_max,
103 std::valarray<double> *y, bool save_to_file = false) {
104 std::valarray<double> dy = *y;
105
106 std::ofstream fp;
107 if (save_to_file) {
108 fp.open("forward_euler.csv", std::ofstream::out);
109 if (!fp.is_open()) {
110 std::perror("Error! ");
111 }
112 }
113
114 std::size_t L = y->size();
115
116 /* start integration */
117 std::clock_t t1 = std::clock();
118 double x = x0;
119
120 do { // iterate for each step of independent variable
121 if (save_to_file && fp.is_open()) {
122 // write to file
123 fp << x << ",";
124 for (int i = 0; i < L - 1; i++) {
125 fp << y[0][i] << ","; // NOLINT
126 }
127 fp << y[0][L - 1] << "\n"; // NOLINT
128 }
129
130 forward_euler_step(dx, x, y, &dy); // perform integration
131 x += dx; // update step
132 } while (x <= x_max); // till upper limit of independent variable
133 /* end of integration */
134 std::clock_t t2 = std::clock();
135
136 if (fp.is_open()) {
137 fp.close();
138 }
139
140 return static_cast<double>(t2 - t1) / CLOCKS_PER_SEC;
141}
142
153void save_exact_solution(const double &X0, const double &X_MAX,
154 const double &step_size,
155 const std::valarray<double> &Y0) {
156 double x = X0;
157 std::valarray<double> y(Y0);
158
159 std::ofstream fp("exact.csv", std::ostream::out);
160 if (!fp.is_open()) {
161 std::perror("Error! ");
162 return;
163 }
164 std::cout << "Finding exact solution\n";
165
166 std::clock_t t1 = std::clock();
167 do {
168 fp << x << ",";
169 for (int i = 0; i < y.size() - 1; i++) {
170 fp << y[i] << ","; // NOLINT
171 }
172 fp << y[y.size() - 1] << "\n"; // NOLINT
173
174 exact_solution(x, &y);
175
176 x += step_size;
177 } while (x <= X_MAX);
178
179 std::clock_t t2 = std::clock();
180 double total_time = static_cast<double>(t2 - t1) / CLOCKS_PER_SEC;
181 std::cout << "\tTime = " << total_time << " ms\n";
182
183 fp.close();
184}
185
189int main(int argc, char *argv[]) {
190 double X0 = 0.f; /* initial value of x0 */
191 double X_MAX = 10.F; /* upper limit of integration */
192 std::valarray<double> Y0{1.f, 0.f}; /* initial value Y = y(x = x_0) */
193 double step_size = NAN;
194
195 if (argc == 1) {
196 std::cout << "\nEnter the step size: ";
197 std::cin >> step_size;
198 } else {
199 // use commandline argument as independent variable step size
200 step_size = std::atof(argv[1]);
201 }
202
203 // get approximate solution
204 double total_time = forward_euler(step_size, X0, X_MAX, &Y0, true);
205 std::cout << "\tTime = " << total_time << " ms\n";
206
207 /* compute exact solution for comparion */
208 save_exact_solution(X0, X_MAX, step_size, Y0);
209
210 return 0;
211}
int main()
Main function.
void forward_euler_step(const double dx, const double x, std::valarray< double > *y, std::valarray< double > *dy)
Compute next step approximation using the forward-Euler method.
double forward_euler(double dx, double x0, double x_max, std::valarray< double > *y, bool save_to_file=false)
Compute approximation using the forward-Euler method in the given limits.
void save_exact_solution(const double &X0, const double &X_MAX, const double &step_size, const std::valarray< double > &Y0)
void problem(const double &x, std::valarray< double > *y, std::valarray< double > *dy)
Problem statement for a system with first-order differential equations. Updates the system differenti...
void exact_solution(const double &x, std::valarray< double > *y)
Exact solution of the problem. Used for solution comparison.