Algorithms_in_C++ 1.0.0
Set of algorithms implemented in C++.
Loading...
Searching...
No Matches
dijkstra.cpp File Reference

[Graph Dijkstras Shortest Path Algorithm (Dijkstra's Shortest Path)] (https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm) More...

#include <cassert>
#include <iostream>
#include <limits>
#include <memory>
#include <queue>
#include <utility>
#include <vector>
Include dependency graph for dijkstra.cpp:

Namespaces

namespace  graph
 Graph Algorithms.
 

Functions

void graph::addEdge (std::vector< std::vector< std::pair< int, int > > > *adj, int u, int v, int w)
 Function that add edge between two nodes or vertices of graph.
 
int graph::dijkstra (std::vector< std::vector< std::pair< int, int > > > *adj, int s, int t)
 Function runs the dijkstra algorithm for some source vertex and target vertex in the graph and returns the shortest distance of target from the source.
 
void tests ()
 
int main ()
 

Variables

constexpr int64_t INF = std::numeric_limits<int64_t>::max()
 

Detailed Description

[Graph Dijkstras Shortest Path Algorithm (Dijkstra's Shortest Path)] (https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm)

Author
Ayaan Khan

Dijkstra's Algorithm is used to find the shortest path from a source vertex to all other reachable vertex in the graph. The algorithm initially assumes all the nodes are unreachable from the given source vertex so we mark the distances of all vertices as INF (infinity) from source vertex (INF / infinity denotes unable to reach).

in similar fashion with BFS we assume the distance of source vertex as 0 and pushes the vertex in a priority queue with it's distance. we maintain the priority queue as a min heap so that we can get the minimum element at the top of heap

Basically what we do in this algorithm is that we try to minimize the distances of all the reachable vertices from the current vertex, look at the code below to understand in better way.

Function Documentation

◆ main()

int main ( void )

Main function

152 {
153 // running predefined tests
154 tests();
155
156 int vertices = int(), edges = int();
157 std::cout << "Enter the number of vertices : ";
158 std::cin >> vertices;
159 std::cout << "Enter the number of edges : ";
160 std::cin >> edges;
161
163 vertices, std::vector<std::pair<int, int>>());
164
165 int u = int(), v = int(), w = int();
166 while (edges--) {
167 std::cin >> u >> v >> w;
168 graph::addEdge(&adj, u, v, w);
169 }
170
171 int s = int(), t = int();
172 std::cin >> s >> t;
173 int dist = graph::dijkstra(&adj, s - 1, t - 1);
174 if (dist == -1) {
175 std::cout << "Target not reachable from source" << std::endl;
176 } else {
177 std::cout << "Shortest Path Distance : " << dist << std::endl;
178 }
179 return 0;
180}
T endl(T... args)
void tests()
Definition dijkstra.cpp:113
void addEdge(std::vector< std::vector< int > > *adj, int u, int v)
Function that add edge between two nodes or vertices of graph.
Definition connected_components.cpp:46
int dijkstra(std::vector< std::vector< std::pair< int, int > > > *adj, int s, int t)
Function runs the dijkstra algorithm for some source vertex and target vertex in the graph and return...
Definition dijkstra.cpp:66
Here is the call graph for this function:

◆ tests()

void tests ( )

Function to test the Algorithm

113 {
114 std::cout << "Initiatinig Predefined Tests..." << std::endl;
115 std::cout << "Initiating Test 1..." << std::endl;
118 graph::addEdge(&adj1, 1, 2, 1);
119 graph::addEdge(&adj1, 4, 1, 2);
120 graph::addEdge(&adj1, 2, 3, 2);
121 graph::addEdge(&adj1, 1, 3, 5);
122
123 int s = 1, t = 3;
124 assert(graph::dijkstra(&adj1, s - 1, t - 1) == 3);
125 std::cout << "Test 1 Passed..." << std::endl;
126
127 s = 4, t = 3;
128 std::cout << "Initiating Test 2..." << std::endl;
129 assert(graph::dijkstra(&adj1, s - 1, t - 1) == 5);
130 std::cout << "Test 2 Passed..." << std::endl;
131
134 graph::addEdge(&adj2, 1, 2, 4);
135 graph::addEdge(&adj2, 1, 3, 2);
136 graph::addEdge(&adj2, 2, 3, 2);
137 graph::addEdge(&adj2, 3, 2, 1);
138 graph::addEdge(&adj2, 2, 4, 2);
139 graph::addEdge(&adj2, 3, 5, 4);
140 graph::addEdge(&adj2, 5, 4, 1);
141 graph::addEdge(&adj2, 2, 5, 3);
142 graph::addEdge(&adj2, 3, 4, 4);
143
144 s = 1, t = 5;
145 std::cout << "Initiating Test 3..." << std::endl;
146 assert(graph::dijkstra(&adj2, s - 1, t - 1) == 6);
147 std::cout << "Test 3 Passed..." << std::endl;
148 std::cout << "All Test Passed..." << std::endl << std::endl;
149}
Here is the call graph for this function: